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I. Neurophysiological Background

� Brain Regions
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� Brodmann Areas

55555

Korbinian Brodmann 
(1968-1918)



� Motor Homunculus � ERD/ERS
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[ Pfurtscheller et al. 2003 ]
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• Invasive:

– Implanted systems � risk, cost, durability problems
– Positron emission tomography, PET � radiation, cost, 

slow response

• Non-invasive:

� Measuring Brain Activity

77777

• Non-invasive:

– Functional MRI � large equipment, cost, slow response
– Near-Infrared Spectroscopy � slow response, long term 

effects unknown

– Magneto-encephalogram, MEG � large equipment, cost
– Electroencephalogram, EEG � limited resolution, but

• low cost
• fast response (i.e., short latency events can be seen)
• portable
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MEG

EEG

Neuro-imaging: An inverse problem

Which areas in the brain are activated by a stimulus or a mental task?
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Comparison of Resolutions of EEG, MEG, fMRI, NIRS, PET
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� Neurons and Action Potentials
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� Neurons and Action Potentials

Neuro-

transmitter 

release

Stimuli (e.g. Action 

potentials from 

other neurons
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(from Kandel, et al., 2000)

Flow of ions

Membrane 

potential 

change

Action 

potential

If …



� Models for Membrane Potentials

Hodgkin-Huxley membrane model
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The Nernst equilibrium potential (for single ions only)



[X] =  ion X concentration in moles/cubic meter;

R (8.31 joules/Kelvin/mole) is the ideal gas constant;

T (293oK at 20oC) is the temperature in Kelvin;

F (96400 coulombs/mole) is the Faraday’s constant;

Z is the valence of the permeant ions.

e.g.,  K+ (Z=+1)

131313

For multiple ions, resting membrane potential:



Hodgkin-Huxley action potential model
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� EEG

15151515

Generation of extra-cellular voltage fields from graded synaptic activity (J.H.Martin 1991)



� EEG

• EEG measures the current flow during synaptic
excitation of the dendrites of pyramidal neurons
in the cerebral cortex.

• EEG is a result of joint activity of millions of
underlying neurons activated together.

1616161616

underlying neurons activated together.

• The amplitude of the EEG signal is proportional to
the number of synchronously activated neurons.

• The EEG signal is “blurred“ version of a real
activity, as signal passes through several layers of
non-neural tissue (meninges, fluid, skull, skin)



� Rhythms of Spontaneous EEG

• delta (<4 Hz): associated with deep sleep, brain disorders.

• theta (4~7 Hz): associated with drowsiness and sleep, stress.

• alpha (8~13 Hz): associated with visual relaxation while awake.

• mu (8~13 Hz): associated with motor relaxation while awake.

17171717

• mu (8~13 Hz): associated with motor relaxation while awake.

• beta (14~30 Hz): normally in sleep, especially in infants and 
young children. In BCI, it is usually 
associated with mu rhythms.

• gamma (30~80 Hz): associated with perception and                                
consciousness. 
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� ERP/EP

An event-related potential (ERP)

is any measured brain response

that is directly the result of a

thought or perception.

18181818

Steady State Visually Evoked Potentials (SSVEP) are signals

that are natural responses to visual stimulation at specific
frequencies. When the retina is excited by a visual stimulus

ranging from 3.5 Hz to 75 Hz, the brain generates electrical

activity at the same (or multiples of) frequency of the visual

stimulus. [From Wikipedia]
18



� International 10-20 system of EEG electrode placement

19191919

The “10” and “20” refer to the 10% or 20% inter-electrode
distance. A - Ear lobe, C - central, Pg - nasopharyngeal, P - parietal,
F - frontal, Fp - frontal polar, O – occipital, T - temporal.
[Malmivuo and Plonsey, 1995]
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� Biosemi System for EEG Recording

2020202020

• Amplifier-A/D converter-PC



� EEG – Motor Imagery Example
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� Time-Space Visualization of EEG
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EEG of imaginary right hand movement



� EEG-based Neuroimaging (EEG inverse problem)

The forward equation:

 voxel at the moments dipole  three:)(
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Minimum norm inverse solution:

Find J by minimizing the following functional w.r.t. J and 

c, for given K, ΦΦΦΦ, and α.

22 |||||||| J1KJΦ α+−−= cF

Using average reference transforms of ΦΦΦΦ, i.e., c=0:
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Standardization of the estimate   (sLORETA):

Estimation of the variance of :Ĵ
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Ĵ
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resolution brain 

electromagnetic 

tomography
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Some issues: (http://www.uzh.ch/keyinst/loreta.htm)

How to choose head model and K? 
How to represent/visualize ΦΦΦΦ and J ? ……



About Head Model:

Not much choice in sLORETA.

The intracerebral volume is partitioned in 6239
voxels at 5 mm spatial resolution. Thus, sLORETA
images represent the standardized electric
activity at each voxel in neuroanatomic Montreal

262626

activity at each voxel in neuroanatomic Montreal
Neurological Institute (MNI) space as the exact
magnitude of the estimated current density.

[Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS. A

standardized boundary element method volume conductor model. Clin

Neurophysiol. 2002, 113:702-12.]



• EEG data can be input as ascii files.

– In samples * channels format. 

Channels

Samples

Formatting EEG Data for Input:

272727



Formatting EEG Data for Input:

• One file is generated for each trial:

…

282828

Subject  A 

Idle 1

Subject A 

Idle 2

Subject A 

Active 1

Subject A 

Idle 3

Subject A 

Idle 4

Subject A 

Active 2

Subject A 

Idle 5

Subject A 

Active 2

…

…
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Specific time Frame

t-values

Selected t-values EEG/ERP time domain



sLORETA frequency domain
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sLORETA frequency domain

Multiple frequency values 

(left to right)  as defined by 

cross spectra settings.  Click  

signals to change TF value. 

(TF 4) = 4th frequency



II. Pattern Recognition Approach to 

EEG Data Analysis

Preprocessing/filtering/artefact removal

Feature extraction (spatio-temporal-frequency, higher-order)

Feature selection and dimensionality reduction

� Basic Steps

3131313131

Classification (offline training and online adaptation)

� Software Tools

BioSig

EEGLab

sLORETA

Matlab Simulink (online analysis), Neuroscan software.



FT

s1=sin(2*pi*t*5)
Fourier

Transform

� Signal Processing – A Brief Primer

3232323232

s2=sin(2pi*t*2)

s3=2sin(2pi*t*15)

FT



clean

FT

3333333333

s=s1+s2+s3+random(- 0.5,0.5)

FT

noisy



Ideal

Filters

Low-Pass

High-Pass

3434343434

Filters

Band-Pass

Band-Stop



A Real LP FilterPassband

Stop band

Transition band

3535353535
Cutoff freq.

Rejection freq.



Filter Design Using Transfer Function

or

36363636

Cutoff frequency, (rejection frequency,) order, filter type 

� values of transfer function parameters.

IIR (non-zero a(k) and b(k)) or FIR (only non-zero b(k)):

More accurate amplitude frequency response or linear phase 



2nd order

unfiltered

3737373737

6th order



order ≥ 1
at 50Hz
(60Hz in some countries)

Signal
Antialiasing

Analogue filter
Highpass filter
Analogue filter

Analogue 
Notch filter

Lowpass
Butterworth
order ≥ 2
cutoff at 100Hz

Butterworth
order ≥ 2
cutoff at 1Hz

Butterworth Butterworth

1 2 3

only one notch

filter is needed

� EEG Pre-processing (Bandpass filtering, Artefacts removal: ICA, …)

3838383838

Digital
Highpass

Digital
Lowpass

Digital Notch
Filter

Butterworth
order ≥ 4
cutoff at 1Hz
forward and
reverse

Butterworth
order ≥ 6
cutoff at 100Hz
forward and
reverse

IIR
order = 2
at 50Hz (60Hz in some countries)

654

filter is needed

Note: the ‘signal’ above is often subtracted from another 
common reference location



� Why Feature Extraction?

• Features are some values computed from the signals.

• Features should be 
– Representative of the signal
– Reproducible

• Other criteria of the features will depend on the 

3939393939

• Other criteria of the features will depend on the 
application

– Smaller dimension than the signal
– Inter-class variance high/intra-class variance low
– Robust/enhanced representation of the signal (invariant to 

changes in noise, scale factors, etc.)

• It is usually much easier to classify features than raw 
signals.



� Commonly used ERP/EEG features

• Negativity/positivity amplitude, latency

e.g., Socially withdrawn children have smaller mismatch  
negativity (MMN) amplitude and longer MMN 
latencies in their auditory ERP.

4040

• Power over frequency bands
(using bandpass filters or Fourier transform) 

e.g. Trait shyness is related to greater relative  
resting right frontal EEG alpha activity, whereas 
trait sociability is related to greater relative 
resting left frontal EEG alpha activity. 



AR model coefficients – another example

� In the example, 4 EEG 

plots for one subject are 

shown from two mental 

activities (math’s activity 

and imagining an object 

being rotated)

� Can you say, which is the 

maths and object rotation 

EEG during math computation

0 500 1000 1500 2000 2500
-40

-30

-20

-10

0

10

20

30

EEG during math computation

ARc=[-1.5661    0.7114   -0.1843   

-0.0583    0.2179   -0.0769

ARc=[-1.6091    0.603   -0.1931   -20

-10

0

10

20

30

40

4141414141

maths and object rotation 

activity EEG from the 

plots?

� Now, use the AR 

coefficients (order 6); can 

you see which is which?

EEG during object rotation

EEG during object rotation

ARc=[-1.6091    0.603   -0.1931   

-0.0432    0.2112    -0.0553]0 500 1000 1500 2000 2500
-40

-30

-20

ARc=[-0.6128   -0.1677   -0.1159   

-0.0733    0.0179    0.0299]

ARc=[-0.5647   -0.2189   -0.0826   

-0.0756    0.0083    0.0215]0 500 1000 1500 2000 2500
-40

-30

-20

-10

0

10

20

30

40

50
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Bispectrum estimated via the direct (FFT) method
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Bispectrum estimated via the direct (FFT) method
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� Higher-order Statistics as BCI Features

4343434343

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.5

-0.4

-0.3

f1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.5

-0.4

-0.3

f1

(a) (b)

(a) Bispectrum of an EEG signal corresponding to a left-hand  
motor imagery; 

(b)  Bispectrum of an EEG signal from the same channel,  
corresponding to a right-hand motor imagery.



Bispectrum

The third-order cumulant: 

Bispectrum is defined as the 2-D Fourier transform 

of the third-order cumulant:
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of the third-order cumulant:
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Higher-order statistics features
Feature definition



An EEG signal segment: x=[x(1), x(2), …, x(N)]

� Approximate Entropy as BCI Features 

A sequence of vectors: y=[y1, y2, …, yM] 

yi=[x(i), x(i+τ), x(i+2τ), …, x(i+(m-1)τ)]
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Θ(v): Heaviside function.



� Combination of Features 

Band power or power spectrum density 

AR coefficients / reflection coefficients

Wavelets

Entropy, approximate entropy, complexity

46464646

Higher-order statistics, e.g., bispectrum-based

Other linear/nonlinear transformations, e.g., PCA, CSP

Spatio-temporal-frequency integration.

Other feature fusion methods. ∑ =
−

N

m
mNmN

1
)!/(!/!

Number of 
possible subsets: 



� FDHSFFS for Feature Subset Selection  

Number of selected features k =0

Number of remaining features n=N

Growing phase:

1) Use filter to select one of the remaining features best 

to add to the current selected feature subset;

2) Use wrapper to compare the best selected feature   

subsets after and before adding a feature. Update   

the best feature subset if performance improved.

k=k+1, n=n-1

Filters used: 

DBI, MRMR

Wrappers used: 

LDA, SVM, KNN

4747474747

k >2?

Pruning phase:

1) Use filter to select one of the selected features best 

to remove;

2) Use wrapper to compare the best selected feature  

subsets after and before removing a feature.

yes

no

Stop criteria satisfied?

End

yes

Performance improved?

Remove a selected feature

k=k-1, n=n+1

no

yes

Do not remove a selected feature
no

LDA, SVM, KNN

Two basic issues: 
Search & evaluation



� Multi-Objective Evolutionary Methods 

for Channel Selection

• Every channel is modelled as a binary variable, with 0 
for channel not selected and 1 for a selected channel.

• Each individual, a string of 0’s and 1’s, represents a 

possible solution. 

• First objective is the error rate defined as:

48484848

• First objective is the error rate defined as:
E = 1- CV, CV is the N-fold cross validation accuracy.

• Second objective is the number of selected channels.

• The goal is to find a set of solutions that minimize 

both objectives.

• Algorithms: Multi-Objective PSO (Reyes and Coello 2005),

MOEA/D (Zhang and Li 2007)



MOPSO Pareto Front
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MOEA/D Pareto Front
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Selected Channels for Subject A – An Example
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� Classification (Pattern Recognition)

• Decision tree

Key issue: a good rule base ( A hierarchical set of
“If conditions Then decision” ). It is usually difficult
to design a complete rule base, e.g., thresholds
selection.

• Similarity matching x

52525252

• Similarity matching

Popular method: k-nearest
neighbours (k-NN).

The class of a data point or
feature vector (xq) is determined
by the class of the majority in its
k nearest neighbours in the sample
data set. (e.g., k=1, 5, or 7)

x1

x2

Key issues?



• Linear discriminant analysis (LDA)

x2The class of a data point or
feature vector (xq) is
determined by a decision line
which is designed by the
Fisher’s discriminant criterion:
to maximize between-class

53535353

x1

to maximize between-class
distance and minimize within-
class covariance.
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Fisher’s criterion:
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• Artificial neural networks

The class of a data point or
feature vector (xq) is
determined by a decision line
(linear or nonlinear) which is
designed by a learning
process.

x

x2

57575757

Key issues: collection of
representative training data,
appropriate learning process,
e.g., back-propagation, Elman
network.

process.
x1

x1

x2

])([][
0 00

∑ ∑∑
= ==

==
n

i

j

m

j

h
ij

h
ki

n

i

ikik xwwhwy ϕϕϕ



• Data distribution based classifiers

Naïve Bayesian classifier:

“Naïve” assumption: Each feature is conditionally 
independent of every other feature.
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Gaussian Mixture Model (GMM). 

Hidden Markov Model (HMM).
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1) Incremental updating of means and covariances for
LDA, Naïve Bayesian, Gaussian Mixture Model
(GMM), Hidden Markov Model (HMM), and
Conditional Random Fields (CRF) adaptation.

• A standard approach: If a new input xt is from the 
class (by label or clustering):

� Online Adaptation of Self-paced BCI Systems

5959595959

A standard approach: If a new input t is from the 
jth class (by label or clustering):
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• Incremental EM (Expectation-Maximization) 
-unsupervised approach

E-step:
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Classification using GMM:
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2) Extended Kalman filter based adaptation of LDA and 
dynamic logistic regression.

e.g., 
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3) Other methods:

Adaptive classification using sequential Monte Carlo
sampling (idea similar to particle filtering)

[J.W. Yoon, S.J. Roberts, M. Dyson, and J.Q. Gan, “Adaptive

classification for brain computer interface systems using sequential

Monte Carlo sampling,” Neural Networks, vol. 22, no. 9, pp. 1286-1294,

6363636363

Monte Carlo sampling,” Neural Networks, vol. 22, no. 9, pp. 1286-1294,

2009.]

……

4) Some issues:

Overfitting/underfitting to new data, forgetting, …



III. EEG-based BCI Experiment Design

� Thought-Driven Control of Mobility Devices via BCI

6464646464



Cognitive/mental tasks 

Electrode placement 

Synchronous or asynchronous (self-paced) 

Spontaneous EEG or evoked potentials (P300, SSVEP)

� BCI Protocols

6565656565

Spontaneous EEG or evoked potentials (P300, SSVEP)

Data recording and labelling for offline analysis

Subjects: healthy or disabled, male or female, ethics, …

Online subject training with biofeedback

Online adaptation



Motor Imagery – Left Hand

6666666666

By SFFS By sLORETA

• BA4: Primary Motor Cortex.

• Precentral Gyrus.

– Upper Alpha / Mu (10.5 – 12 Hz).



Motor Imagery – Right Hand

6767676767

By SFFS By sLORETA

• BA3: Primary Somatosensory.

• Postcentral Gyrus.

– Upper Alpha / Mu (10.5 – 12 Hz).



Auditory Imagery
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By SFFS By sLORETA

• BA21: Auditory Association Area.

• Middle Temporal Gyrus.

– High Beta (21 – 30 Hz).



Phone Imagery

6969696969

By SFFS By sLORETA

• BA21: Auditory Association Area.

• Middle Temporal Gyrus.

– High Beta (21 – 30 Hz).



Navigation Imagery

7070707070

By SFFS By sLORETA

• BA5:   Somatosensory Association.

• BA32: Spiers et al: Activity correlated with 

proximity to the goal during navigation.

• Paracentral Lobule & Cingulate Gyrus.

– Upper Alpha (10.5 – 12 Hz ) & Beta (18.5 – 21 Hz).



Mental Arithmetic

7171717171

By SFFS By sLORETA

• BA47: Semantics & Syntax.

• Inferior Frontal Gyrus.

– Low Beta (12.5 – 18 Hz)
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[Courtesy of BCI Lab, Graz.]



Graz Synchronous BCI Timing and Labelling

7373737373

Left/Right



Specially designed scenario (hexagon grid) for online 
labelling and thus online training of self-paced BCI

7474747474



Hangman game for online labelling and thus online 
training of self-paced BCI

75



� Basic Setup of the Essex Self-paced Motor Imagery 
Based Online BCI

3 motor imagery tasks:

� feet � moving forward

� right hand � turning right

� left hand � turning left

EEG data acquisition

7676767676

5-channel bipolar electrodes; 250Hz

Classification:

LDA  classifiers and others.

Features:

Selected band power and... 

Key to success:

Online training/adaptation.



IV. On-line BCI Systems at Essex

7777777777



Essex Online Adaptive Self-paced BCI

7878787878



Essex Online Self-paced BCI for Mobile Robot Control

7979797979



Essex Self-paced BCI for Wheelchair Control

8080808080



Essex Self-paced BCI for Playing Hangman Game

81



V. Other Applications

Early detection of social withdrawal in children

Early detection of learning difficulties in children

Early intervention via biofeedback and its evaluation

Medical diagnosis, Rehabilitation

8282828282

Medical diagnosis, Rehabilitation

…… (Any other suggestions?)

�Salient features at specific locations/frequency 
bands/time, corresponding to well-designed cognitive 
tasks 

� Effective feedback and evaluation 
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